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ANALYSIS OF THE CALIBRATION TESTS
FOR THE APOLLO VARIAN RUBIDIUM
FREQUENCY STANDARDS

by
Charles W. Murray, Jr.

SUMMARY

Results of calibration tests conducted by the Bureau of Standards on three
R-20 Rubidium Frequency Standards submitted by Varian Associates of Palo
Alto, California are analyzed. The technique of least squares is used to calcu-
late "best fit'' zero, first, second, and third degree polynomials which describe
as a function of time the variation in relative frequency of each standard from a
reference — the United States Frequency Standard. A pooled sample of devia-
tions of the daily readings from the daily averages is compared to a normal dis-
tribution having the same mean and standard deviation. This is done for each
unit. In addition, the residuals of the 'best fit'"' straight lines for each frequency
standard are compared to a normal distribution. The deviations of the daily
readings from the daily averages as well as the residuals of the 'best fit"
straight lines show fairly good agreement with a normal distribution.

Using the expressions for the '"best fit" straight lines, the drifts in rela-
tive frequency over a period of one year are: -(13.6)10-11, +(34.1)10-11, and
+(1.7)10-11,

The standard deviations of the polynomials are determined for each fre-
quency unit and plotted as a function of time. It is shownthat the straight line is a
more '"stable predictor" of Rubidium Frequency Standard performance than a
higher degree polynomial in the sense that the standard deviation of the straight
line remains within an arbitrary tolerance of 1 part in 10!! for a much longer
period of time (well over a year) than does a higher degree polynomial.

The 90% and 95% tolerance limits for the deviations of the daily readings
from the 'best fit'" straight lines are also shown for each frequency standard.
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ANALYSIS OF THE CALIBRATION TESTS
FOR THE APOLLO VARIAN RUBIDIUM
FREQUENCY STANDARDS

INTRODUCTION

Results of calibration tests, performed by the National Bureau of Standards,
on three R-20 Rubidium Frequency Standards (serial 100, 106, and 107) submitted
by Varian Associates of Palo Alto, California, have been analyzed. Data on serial
100 covered the period from 22 July 1965 to 15 November 1965; data on serial 106
covered the period from 1 September 1965 to 6 December 1965; and, data on
serial 107 covered the period from 23 August 1965 to 15 November 1965.

An explanation of the test procedure is given below as well as a discussion of
the least squares polynomial fitting to the data, a statistical analysis of the devi-
ations of the daily readings from the daily averages, and the determination of the
standard deviation of the polynomial. A section is devoted to a discussion of the
least squares technique and the determination of the covariance matrix of the co-
efficients.

The most salient feature of the analysis is that a straight line fit to the data
provides us with a more "stable predictor" of frequency standard performance
than does a higher degree polynomial fit.

TEST PROCEDURE

A simplified block diagram of the Rubidium Frequency Standard Calibration
Test is shown in Figure 1. Letting t = time in seconds, A, = amplitude of the
signal from the R-20 (volts), and ¢, (t) = phase angle of the R-20 (radians), we
can write an expression for the signal from the R-20 oscillator, V (t), as:

V, (1) = Ay cos (¢(1)) (1)

where

Po(t) = 27f t + 0y (t) (radians)
f,=R-20 nominal frequency = 5MHz

9,(t) = variation of R-20 phase angle due to random noise,
frequency offset, and drift (radians)

1




The signal from the R-20 Test Oscillator is fed into a frequency multiplier
(K) and the output signal, V, (t), is:

V,(t) = A cos (K, (t)]. 2)

V,(t) is then fed into a phase detector. A signal, V,(t) , from the USFS
(United States Frequency Standard — Cesium) with a nominal frequency f_ =
9192.631770 MHz (Reference 1), amplitude A, (volts), and phase angle ¢, (t)
(radians), is also fed into the phase detector. V,(t) can be represented by:

V,(t) = A, cos [¢ ()] (3)
where

d(t) = 2mf t + ¢ _(t) (radians)

@ (t) =variation in phase angle of the USFS due to random
noise (radians)

The output difference signal from the phase detector, V(t) , then becomes:

V(t) = Acos [27(f, - K )t + (0, (t) - Koy (t))] (4) ®
where
A = amplitude (volts)
K = multiplying factor
Letting 0,(0) and ¢,(0) represent respectively the values of @,(t) and

9 _(t) attime t = 0, the change in phase angle, Ao, at the output of the detector,
after a time t = T seconds may be written:

Ao =0 (T) - Ko (T) - [9_(0) - Ko, (0)] (5)
or
Ao = KA(DO
where
? (T) - 9,(0) is small
and

Bog = ©9(0) ~ 9 (T)




The change in phase angle, Ag, , due to random noise, frequency offset, and
frequency drift in the R-20 over an interval of T = 200 seconds (a time interval
corresponding to 10 cycles of the difference frequency), was measured and
divided by T to obtain:

Af :%;(l)é_“_’_

° T "\k/ T

or
B, . (i) Do (6)
f, \K/) T,T

Each day approximately 6 to 12 observations as given by equation (6) were
made.

The values as recorded in references 2, 3, and 4 are expressed in (Af 0 /f 0)
1010 units. In the same references, it is stated that the absolute accuracy of the
USFC is presently believed to be +6 x 10”2, No indication of the meaning of this
number is given.

ANALYSIS AND DISCUSSION

In the following paragraphs we will discuss the analysis techniques and the
results obtained in this report.

Least Squares Polynomial Fitting to Daily Averages

The daily averages' were calculated using all of the daily observations ex-
cept in those instances where an observation varied significantly from the others.
In these cases the particular observation was thrown out and the average com-
puted using the remaining observations. Figures 2, 3, 4, and 5 show those ob-
servations which were excluded. It should be noted that these observations were
not thrown out by any fixed criterion but rather by an ""eye-smoothing' process.

A least squares polynomial was then fitted to the observed daily averages

for each Rubidium Standard. These results may be seen in Figures 6 through 11
inclusive. Figures 6, 8, and 10 which refer to serials 100, 106, and 107 respec-
tively contain plots of the daily averages versus time (in days) as well as the
"best fit" (in the sense of least squares) polynomials of degree 0, 1, 2, and 3 for
these data points. Figures 7, 9, and 11 also pertain to serials 100, 106, and 107
respectively, but are for extended periods of time — up to one year. In each fig-
ure the equation of the "best fit" polynomial is indicated as well as the standard

1The daily averages were used instead of the daily readings since there were no recordings of
the time of the daily readings.



deviation of fit, 7.2 It should be noted that two daily averages were excluded in
order to "'smooth out' the data (see Figures 8 and 10).

Using the expressions for the "best fit" straight lines, the drifts in relative
frequency over a period of one year (T = 365) are: -(13.6)107!! for serial 100;
+(34.1)107 ! for serial 106; and, +(1.7)10~ 1! for serial 107.

Statistical Analysis of Daily Variation and Variation of the
Residuals of the "Best Fit'" Straight Line

A pooled sample of deviations of the daily readings from the daily averages
was taken for each frequency standard (106 for serial 100, 110 for serial 106,
and 107 for serial 107) and the standard deviation calculated. Figure 12 shows
the histograms for the samples compared to normal distributions having the
same mean (zero) and standard deviation.

Figures 13, 14, and 15 show the histograms of the residuals or the devia-
tions of the daily averages from the '"best fit" straight lines. Again the
histograms are compared with normal distributions having the same mean and
standard deviation. For a normal distribution the expected number of observa-
tions falling outside +1.64 standard deviations (these limits correspond to a
probability of 90%) is 4.5 for a sample size of 45 (serial 100), 3.8 for a sample
size of 38 (serial 106), and 2.9 for a sample size of 29 (serial 107). The ob-
served numbers which fell outside these limits were 5, 3, and 2 for serial 100,
106, and 107, respectively. It does not seem unreasonable, therefore, to assume
a normal distribution for the residuals.

Figures 16, 17, and 18 show the 90% and 95% tolerance intervals for the
deviations of the daily readings from the "best fit'" straight lines for the three
units. In calculating these limits a normal distribution was assumed for the
residuals. The standard deviation of the daily readings from the straight line
was calculated using the following relationship: B

s=/n*+ s3 ()

2 The standard deviation of fit 7 is computed as:
r, =‘/( ! ) Zn [yi - P(xi)] 2 where n = number ofdata points,

n-p
i=1

u = k +1, k =degree of the polynomial, P (x.) = value of the “best fit” polynomial at the point x;
(i =1,2,...n),y, = observed value corresponding to x, (see Reference 5).




where n = standard deviation of fit and s 4 is the standard deviation of the
pooled sample. 3

The Standard Deviation of the Least Squares Polynomial
As a Function of Time*

Having calculated the coefficients of a least squares polynomial to a set of
experimental data, one may ask, ""How good is the polynomial in predicting the
performance of the Rubidium Standards?' Or, phrasing the question another
way, '"What is the spread of values that the polynomial can take as a function of
time based upon the finite sample of data points?" In order to answer this
question, it will be sufficient to write an expression for the standard deviation
of the polynomial at a given instant of time.

Let the form of the least squares polynomial be

'37:P(x):a0+alx+a2x2 + oo+ axk (k 2 0) (8)

When x = x;, y will have the value Y given by

y. = P(Xj) =a

a
j +

X, 4 -or + akx‘j‘ 9)

0 175

Considering the coefficients as random variables we can write an expression
for the standard deviation of y when x = x; as follows:

k k~m k

m=0 n=0 m=0

where af = o is the variance of a_ and o is the covariance be-

a_a a

*
tween a_"and a],” womTe

m+n®

3This relationship holds if it is assumed that the statistics do not change with time and that the
deviations of the daily readings from the “best fit” straight line are uncorrelated.

4A rather detailed description of the known “Method of L east Squares” is presented for the
convenience of the reader.




As an example, the standard deviation of §j for a second degree polynomial
when x =x; can be written as

- 2 2 52 4 2 2 3 (11)
o = o X% o xT o X. O 2x¢0 2x%0
;, V"o +X] al+ ; a2+ 2 i %aga, + i %aga, +2x; a8,

In order to determine the variances and covariances in (10) we will briefly

describe the least squares technique using matrix notation in order to simplify
the algebra.

Brief Discussion of the Least Squares Technique and the Determination
of the Covariance Matrix of the Coefficients

Reference (5) contains a discussion of the generalized case of the method
of least squares and, in addition, includes a procedure for calculating the un-
certainty associated with each quantity determined by the least squares method.
In this report the quantities are the coefficients of the 'best fit"' polynomials
and the uncertainty is the standard deviation of each coefficient. We will now
briefly describe the least squares method and determine the covariance matrix
of the coefficients from which the uncertainties associated with the coefficients
as well as the covariances between the coefficients can be obtained.

Let the data be represented by the set of n points (xl,yl), (%,5¥,)s e ¢ e
(xn,yn) where it is assumed that the errors are in the ordinates Y, only and let
the form of the polynomial be as indicated in (8) with n 2 k. The least squares
method assumes that the "best'" set of values for the coefficients a, is that set
which minimizes the sum S of the squares of the deviations (v,’s) of the observed

quantities (y, 's) from the values of the polynomial (y"i 's). This can be expressed
mathematically as

n

S = 2 - - y.)? (12)
Z v _ y; -v;)

i=1 i

In order to minimize S it is necessary to take the partial derivatives of §
with respect to each of the coefficients and set these derivatives equal to zero.
When this is done k ;1 '"normal'" equations in k +1 unknowns result. The set
of coefficients is then the set of roots which satisfy the k + 1 simultaneous
linear equations. The normal equations are given by:




AV A\ +/T“‘xku\ak:€-‘y_x
\&) "\ ) \&™ ) & (13)

(ixgaM@xfn)aﬁ... (Z > ONT

i=1 i=1 i=1 1=1

The set of equations in (13) can be solved by standard techniques. For ease
of notation let us now use matrices. First, we can write down n "observational"
equations which express each observation as a function of the least squares
polynomial evaluated at the point X, and the residual v, (G =1,2,...n),

. yl=210+alxl+...Wua;kx‘;ﬁuv1
(14)

— k
yn_ao+alxn+.“+akxn+vn'

Letting °
- — — I
2 k
Y, 1 x, x7- X7 a,
2 k
vy, 1 x, x3- X, a,
Y = A= X-=
2 k
- y l X X IR X ak
| "] L. " " o |

AT denotes the transpose of A; A"l denotes the inverse of A; £(V) denotes the expectation of
a random matrix V. £(V VT) denotes the covariance matrix of a random motrix V with zero mean.




and

[ v, ]
v2
V =
| Vn ]
the equations in (14) become
Y-AX+V (15)

The normal equations in (13) may be written as
(ATA) X = ATY (16)

Solving the matrix equation (16) for X we obtain the '"best' estimate for the
coefficients

X = (ATA)"1ATY (17)

In order to find the covariance matrix of the coefficients we must find the
expected value of (X-X) (X-X)T. Substituting (15) into (17) one obtains after
some manipulation

E(X = X)X = X)T = (AT A)~1ATE(VVT) A (ATA)"! (18)

If we assume the residuals v, (i= 1,2,...n)to be uncorrelated random
variables each with variance 72 (the square of the standard deviation of fit,
previously defined) we have

E(VVT) = 7721 (19)

where I is the nx n identity matrix.

Substituting (19) into (18) we have the required covariance matrix of the
coefficients

X=X (X - X)F = n2(ATAY"? (20)




Letting P denote the covariance matrix of the coefficients, and Q the inverse
of AT A, we can write

o2 o o

2 Sl 253y

"

o o, o, .

38y 1 1%k

P=1c Ta.a o 21

8082 192 a2ak ( )
o o, o2

aoak lak ak —J

94 q;, - ql,k+1
9, 9y 0 k4

= 7
Y11 qk+1.k+_1_J

As an example, the covariance between a L and a, would be given by q,, 7%

and the variance of a, would be given by q,, 2.

The variances and covariances of the coefficients were calculated for each
degree polynomial (zero, first, second, and third) and for each frequency stand-
ard. They were then substituted into (10). The standard deviation of the poly-
nomial was then plotted as a function of X, and can be seen in Figures 19, 20,
and 21.

It is evident from these figures that the uncertainty (standard deviation) of
the second and third degree polynomials increases sharply just after the period
of observation and that the standard deviation of the straight line stays within an
arbitrary tolerance of 1 part in 101!for a much longer period of time (over a
year) than the standard deviation of the higher degree polynomial.

Table I gives the standard deviation of the coefficients of the least squares
polynomials, and Table II gives the length of time in days during which the
standard deviation of the polynomial is less than 1 part in 1011,



CONCLUSIONS

(1) A '"best fit'" straight line serves as a more "stable predictor" of Rubid-
ium Frequency Standard performance than a higher degree polynomial in the
sense that the standard deviation of the straight line remains within an arbitrary
tolerance of 1 part in 101! for a longer period of time (over 1 year) than the stand-
ard deviation of a higher degree polynomial.

(2) The "best fit" straight lines for Rubidium Frequency Standards R-20
Serials 100, 106, and 107 give the following drifts over a period of one year:
-(13.6)10-11 (serial 100); +(34.1)10-11 (serial 106), and +(1.7)10-11 (serial 107).

(3) For periods of time comparable to those over which the observations
were made on Rubidium Frequency Standards R-20 Serials 100, 106, and 107,
and under the assumptions indicated, there are 90% and 95% probabilities that

the daily readings will fall within the boundaries as shown in Figures 16, 17,
and 18.
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Table I

Standard Deviations* of the Coefficients of the
Least Squares Polynomials

General Form of the Least Squares Polynomial (see Figures 6, 8, and 10).

(—A;-)lom =ayg+a,T+...

k
+ akT

where k is the degree of the polynomial and T is time (in days).

Serial 100

Serial 106

Serial 107

k

crao O’a1 0'82 0’83
0 .14600
1 .01735 2775 x 10-3
2 .02944 1.228 x10°3 .9842 x 10-3
3  .04194 3.083 x10-3 6.243 x10-5 3.541 x 10-7
0 .29090
1 .01703 .3004 x 10-3
2 .01408 .7491 x 10-3 7929 x 105
3  .01436 1.533 x10-3 3.970 X 10-5 2.817 x 10-7
0 .04170
1 .01299 .2810 x 10-3
2  .01543  1.024 x10-3 1.292 x 10~
3 .01914 2.560 x 103 7.780 X 10-3 6.400 x 10-7

*
All values in the body of the table are in parts in 1010,

11



Table II
Length of Time in Days During which the Standard Deviation
of the Polynomial* is Less Than 1 Part in 10"

Linear Quadratic Cubic
Serial 100 411 165 133
Serial 106 380 161 125
Serial 107 393 129 99

*
The standard deviation of a kth degree polynomial when x= x; is
given by the following relationship:

k k=m k
+
Y DI I LI Db X,
yi m=0 n=0 m"m+n m=0 m
where 002 = 0a, a is the variance of a. and Oy o is the covari-
m m m¥n

ance between a and A n

12
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